Parkin stabilizes microtubules through strong binding mediated by three independent domains.
نویسندگان
چکیده
Mutations of parkin, a protein-ubiquitin isopeptide ligase (E3), appear to be the most frequent cause of familial Parkinson's disease (PD). Our previous studies have demonstrated that parkin binds strongly to alpha/beta tubulin heterodimers and microtubules. Here we show that the strong binding between parkin and tubulin, as well as that between parkin and microtubules, was mediated by three independent domains: linker, RING1, and RING2. These redundant strong interactions made it virtually impossible to separate parkin from microtubules by high concentrations of salt (3.8 m) or urea (0.5 m). Parkin co-purified with tubulin and was found in highly purified tubulin preparation. Expression of either full-length parkin or any of its three microtubule-binding domains significantly attenuated colchicine-induced microtubule depolymerization. The abilities of parkin to bind to and stabilize microtubules were not affected by PD-linked mutations that abrogate its E3 ligase activity. Thus, the tubulin/microtubule-binding activity of parkin and its E3 ligase activity are independent. The strong binding between parkin and tubulin/microtubules through three redundant interaction domains may not only stabilize microtubules but also guarantee the anchorage of this E3 ligase on microtubules. Because many misfolded proteins are transported on microtubules, the localization of parkin on microtubules may provide an important environment for its E3 ligase activity toward misfolded substrates.
منابع مشابه
Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation.
Mitogen-activated protein kinases, originally known as microtubule-associated protein (MAP) kinases, are activated in response to a variety of stimuli. Here we report that microtubule-depolymerizing agents such as colchicine or nocodazole induced strong activation of MAP kinases including JNK, ERK, and p38. This effect was markedly attenuated by parkin, whose mutations are linked to Parkinson d...
متن کاملMicrotubule: a common target for parkin and Parkinson's disease toxins.
Parkinson's disease (PD) is characterized by the selective loss of nigral dopaminergic (DA) neurons, which have long axons enriched with microtubules. Depolymerization of microtubules by PD toxins such as rotenone disrupts vesicular transport. The ensuing accumulation of vesicles in the cell body leads to increased cytosolic concentration of dopamine due to leakage of the vesicles. Elevated oxi...
متن کاملNeurobiology of Disease Direct Binding with Histone Deacetylase 6 Mediates the Reversible Recruitment of Parkin to the Centrosome
Histone deacetylase 6 (HDAC6), a microtubule-associated tubulin deacetylase, plays a significant role in the formation of protein aggregates in many neurodegenerative disorders. Parkin, a protein-ubiquitin E3 ligase linked to Parkinson’s disease, accumulates at the centrosome in a microtubule-dependent manner in response to proteasome inhibition. Here, we show that the centrosome recruitment of...
متن کاملDirect binding with histone deacetylase 6 mediates the reversible recruitment of parkin to the centrosome.
Histone deacetylase 6 (HDAC6), a microtubule-associated tubulin deacetylase, plays a significant role in the formation of protein aggregates in many neurodegenerative disorders. Parkin, a protein-ubiquitin E3 ligase linked to Parkinson's disease, accumulates at the centrosome in a microtubule-dependent manner in response to proteasome inhibition. Here, we show that the centrosome recruitment of...
متن کاملParkin, A Top Level Manager in the Cell’s Sanitation Department
Parkin belongs to a class of multiple RING domain proteins designated as RBR (RING, in between RING, RING) proteins. In this review we examine what is known regarding the structure/function relationship of the Parkin protein. Parkin contains three RING domains plus a ubiquitin-like domain and an in-between-RING (IBR) domain. RING domains are rich in cysteine amino acids that act as ligands to b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 17 شماره
صفحات -
تاریخ انتشار 2005